SCHEME OF COURSE WORK

Course Title	MECHANICS OF COMPOSITE MATERIALS					
Course Code	19ME2154	L	Т	Р	С	3003
Program:	M.Tech.					
Specialization:	CAD/CAM					
Semester	Ι					

Course Outcomes (COs):

At the end of the course, the student will be able to

CO1	Classify Composites, Types of reinforcement and Matrix Phases
CO2	Determine Stress and Strain, Elastic Constants of Composites
CO3	Explain Different Fabrication methods to Prepare Composite Materials
CO4	Describe Methods to Characterize composite Properties
CO5	Analyses Different Types of Composite Laminates using thin plate Theory

Program Outcomes (POs)

At the end of the program, the students in CAD/CAM will be able to

- 1. acquire fundamentals in the areas of computer aided design and manufacturing
- 2. apply innovative skills and analyze computer aided design and manufacturing problems critically
- 3. identify, formulate and solve design and manufacturing problems
- 4. carry out research related to design and manufacturing
- 5. use existing and recent CAD/CAM software
- 6. collaborate with educational institutions, industry and R&D organizations in multidisciplinary teams
- 7. apply project and finance management principles in engineering projects
- 8. prepare technical reports and communicate effectively
- 9. engage in independent and life-long learning and pursue professional practice in their specialized areas of CAD/CAM
- 10. exhibit accountability to society while adhering to ethical practices
- 11. act independently and take corrective measures where necessary

Course Outcome versus Program Outcomes:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	S	S	S	Μ								
CO-2	S	S	S	Μ					Μ			
CO-3	S	S	S	S		Μ			Μ			
CO-4	S	Μ	S						Μ			
CO-5	S		S	М	Μ	Μ			Μ			

S - Strongly correlated, M - Moderately correlated, Blank - No correlation

Teaching-Learning and Evaluation

Week	Topic / Contents	Course Out Comes	Sample Questions	Teachi ng - Learning Strategy	Assessment Method & Schedule
2	Definition of composite materials, classification based on matrix and topology, constituents of composites and distribution Mechanical behavior of composites, Nano composites and Applications	CO1 CO1	 Define a composite material Classify the Composite materials. What is role of a matrix and reinforcement? Explain Enumerate the desirable 	Lecturing, and class room Seminars Teaching aids: Black board and chalk, PPTs, You Tube videos, NPTI	
3	Resins, polyester, epoxy,, Metal matrices, Reinforcement, Different types of fibers such as glass, boron, carbide etc.	CO1 CO1	reinforcement composites	lectures	Seminar (week 3-
	Whiskers, fillers and parting agents.				7)
5	Fabrication methods: Hand lay-up molding, bag molding, mating molds	CO2	 Explain the manufacturing methods Bag molding and Spray up Molding 	Lecturing, and class room Seminars	
6	Spray up molding, matched- die molding , perform molding, filament molding	CO2		Teaching aids: Black board and	
7	Winding patterns and winding machines, pultrusion, liquid composite molding	CO2		chalk, PPTs, You Tube videos, NPTL lectures	
8	Mid-Test 1	CO1 CO2	Descriptive Test covering CO1 and CO2		
9	Micromechanics : weight and volume fractions, properties of lamina, representative volume element	CO3	 Describe Volume and weight fraction of composites. Derive longitudinal and transverse stiffness/ Modulus by method of mixtures. 	Lecturing, and class room Seminars Teaching aids: Black	
10	Micromechanical behavior of lamina: stress- strain relation for anisotropic materials, stiffness, compliances,			board and chalk, PPTs, You Tube videos, NPTL lectures	

11	Engineering constants, restriction on engineering constants, stress –strain relation for plain stress in orthotropic materials	CO3			Seminar
12	Macro mechanical behavior of laminates and plate theories, Elastic approach to stiffness,	CO4	 State the various failure theories of laminates. Explain the coefficient of thermal and 	Lecturing, and class room Seminars	(week 11- 16)
13	Mechanics of materials approach to stiffness and strength, classical laminate theory	CO4 CO4	moisture expansions of composite 3.Explain behavior of composite under tension and compression	Teaching aids: Black board and chalk, PPTs, You Tube	
1.7	Special cases of laminate stiffness, strength of laminates, inter laminate stresses	202		videos, NPTL lectures	
15	Strength of unidirectional lamina: Micromechanics of failure, failure mechanisms, strength of an orthotropic lamina	C05	 Explain single and multi facture mode in composites. Explain failure envelope and De-bonding 	Lecturing, and class room Seminars Teaching aids: Black	
16	Strength of a lamina under tension and shear, Max. stress and strain criterion,	CO%		board and chalk, PPTs, You Tube videos, NPTL	
17	Tensile and compressive strength of unidirectional fiber composites, facture modes in composites	CO5		lectures	
18	.Single and Multiple fracture, de-bonding, fiber pull out and de-lamination failure, fatigue of laminate composite, failure envelope.	CO5			
19	Mid-Test 2	CO-3, CO-4, CO-5	Descriptive Test covering CO3,CO4,CO5		
20/21	END EXAM	All Cos	End Examination for 60 marks covering all CO,s		